Learning Policies with External Memory

Leonid Peshkin
Computer Science Dept.
Brown University, Box 1910
Providence, RI, 02912-1910
ldp@cs.brown.edu

Abstract

In order for an agent to perform well in par-
tially observable domains, it is usually nec-
essary for actions to depend on the history
of observations. In this paper, we explore
a stigmergic approach, in which the agent’s
actions include the ability to set and clear
bits in an external memory, and the exter-
nal memory is included as part of the input
to the agent. In this case, we need to learn a
reactive policy in a highly non-Markovian do-
main. We explore two algorithms: SARSA(A),
which has had empirical success in partially
observable domains, and vAPS, a new algo-
rithm due to Baird and Moore, with conver-
gence guarantees in partially observable do-
mains. We compare the performance of these
two algorithms on benchmark problems.

1 Introduction

A reinforcement-learning agent must learn a mapping
from a stream of observations of the world to a stream
of actions. In completely observable domains, it is suf-
ficient to look only at the last observation, so the agent
can learn a “memoryless” mapping from observations
to actions [16]. TIn general, however, the agent’s ac-
tions may have to depend on the history of previous
observations.

Previous Work There have been many approaches
to learning to behave in partially observable domains.
They fall roughly into three classes: optimal memory-
less, finite memory, and model-based.

The first strategy is to search for the best possi-
ble memoryless policy. In many partially observ-

Nicolas Meuleau
Computer Science Dept.
Brown University
nm@cs.brown.edu

Leslie Pack Kaelbling
Computer Science Dept.
Brown University
Ipk@cs.brown.edu

able domains, memoryless policies can actually per-
form fairly well. Basic reinforcement-learning tech-
niques, such as Q-learning [25], often perform poorly
in partially observable domains, due to a very strong
Markov assumption. Littman showed [10] that find-
ing the optimal memoryless policy is NP-Hard. How-
ever, Loch and Singh [11] effectively demonstrated
that techniques, such as sARSA()), that are more ori-
ented toward optimizing total reward, rather than
Bellman residual, often perform very well. In addi-
tion, Jaakkola, Jordan, and Singh [7] have developed
an algorithm for finding stochastic memoryless poli-
cies, which can perform significantly better than de-
terministic ones [20].

One class of finite memory methods are the finite-
horizon memory methods, which can choose actions
based on a finite window of previous observations. For
many problems this can be quite effective [12, 18].
More generally, we may use a finite-size memory, which
can possibly be infinite-horizon (the systems remem-
bers only a finite number of events, but these events
can be arbitrarily far in the past). Wiering and
Schmidhuber [26] proposed such an approach, learn-
ing a policy that is a finite sequence of memoryless
policies.

Another class of approaches assumes complete knowl-
edge of the underlying process, modeled as a par-
tially observable Markov decision process (POMDP).
Given a model, it is possible to attempt optimal so-
lution [8], or to search for approximations in a variety
of ways [5, 4, 6, 13]. These methods can, in principle,
be coupled with techniques, such as variations of the
Baum-Welch algorithm [17], for learning the model to
yield model-based reinforcement-learning systems.

Stigmergy In this paper, we pursue an approach
based on stigmergy. The term is defined in the Ox-
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Figure 1: The architecture of a stigmergic policy.

ford English Dictionary [19] as “The process by which
the results of an insect’s activity act as a stimulus to
further activity,” and is used in the mobile robotics
literature [2] to describe activity in which an agent’s
changes to the world affect its future behavior, usually
in a useful way.

One form of stigmergy is the use of external memory
We are all familiar with practices such as
making grocery lists, tying a string around a finger,
or putting a book by the door at home so you will
remember to take it to work. In each case, an agent

devices.

needs to remember something about the past and does
so by modifying its external perceptions in such a way
that a memoryless policy will perform well.

We can apply this approach to the general problem
of learning to behave in partially observable environ-
Figure 1 shows the architectural idea. We
think of the agent as having two components: one is

ments.

a set of memory bits; the other is a reinforcement-
learning agent. The reinforcement-learning agent has
as input the observation that comes from the environ-
ment, augmented by the memory bits. Its output con-
sists of the original actions in the environment, aug-
mented by actions that change the state of the mem-
ory. If there are sufficient memory bits, then the opti-
mal memoryless policy for the internal agent will cause
the entire agent to behave optimally in its partially ob-
servable domain.

Consider, for instance, the load-unload problem rep-
resented in Figure 2. In this problem, the agent is
a cart that must drive from an Unload location to a
load location, and then back to unload. This problem
is a simple MDP with a one-bit hidden variable that
makes it non-Markov (the agent cannot see whether
it is loaded or not). It can be solved using a one-bit
external memory: we set the bit when we make the
Unload observation, and we go right as long as it is set
to this value and we do not make the Load observation.
When we do make the Load observation, we clear the
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Figure 2: The state-transition diagram of the load-
unload problem; aliased states are grouped by dashed
boxes.

bit and we go left as long as it stays at value 0, until
we reach state 9, getting a reward.

There are two alternatives for designing an architec-
ture with external memory:

e Either we augment the action space with actions
that change the content of one of the memory bits
(adds L new actions if there are L. memory bits);
changing the state of the memory may require
multiple steps.

e Or we compose the action space with the set of all
possible values for the memory (the size of the ac-
tion space is then multiplied by 2%, if there are L
bits of memory). In this case, changing the exter-
nal memory is an instantaneous action that can be
done at each time step in parallel with a primitive
action, and hence we can reproduce the optimal
policy of the load-unload problem, without taking
additional steps.

Complexity considerations usually lead us to take the
first option. It introduces a bias, since we have to lose
at least one time-step each time we want to change
the content of the memory. However, it can be fixed
in most algorithms by not discounting memory-setting
actions.

The external-memory architecture has been pursued
in the context of classifier systems [3] and in the con-
text of reinforcement learning by Littman [10] and by
Martin [15]. Littman’s work was model-based; it as-
sumed that the model was completely known and did
a branch-and-bound search in policy space. Martin
worked in the model-free reinforcement-learning do-
main; his algorithms were very successful at find-
ing good policies for very complex domains, including
some simulated visual search and block-stacking tasks.
However, he made a number of strong assumptions and



restrictions: task domains are strictly goal-oriented;
it is assumed that there is a deterministic policy that
achieves the goal within some specified number of steps
from every initial state; and there is no desire for op-
timality in path length.

This work We were inspired by the success of
Martin’s algorithm on a set of difficult problems, but
concerned about its restrictions and a number of de-
tails of the algorithm that seemed relatively ad hoc. At
the same time, Baird and Moore’s work on vaPs [1], a
general method for gradient descent in reinforcement
learning, appealed to us on theoretical grounds. This
paper is the result of attempting to apply vaprs algo-
rithms to stigmergic policies, and understanding how
it relates to Martin’s algorithm. In this process, we
have derived a much simpler version of vaps for the
case of highly non-Markovian domains: we calculate
the same gradient as vaPs, but with much less com-
putational effort.

In the next section, we present the relevant learning
algorithms. Then we describe a set of experimental
domains and discuss the relative performance of the
algorithms.

2 Algorithms

We begin by describing the most familiar of the algo-
rithms, sARsA(A). We then describe the vaps algo-
rithm in some detail, followed by our simplified ver-
sion.

2.1 SARSA(A)

SARSA is an on-policy temporal-difference control
learning algorithm [23]. Given an experience in the
world, characterized by starting state z, action a, re-
ward r, resulting state z’ and next action a’, the up-
date rule for sARSA(0) is

Q(z,a) « Q(z,a)+ a[r+vQ(2',d') — Q(z,a)] . (1)

It differs from the classical Q-learning algorithm [24]
in that, rather than using the maximum @-value from
the resulting state as an estimate of that state’s value,
it uses the @)-value of the resulting state and the action
that was actually chosen in that state. Thus, the val-
ues learned are sensitive to the policy being executed.

In truly Markov domains, Q-learning is usually the
algorithm of choice; policy-sensitivity is often seen
as a liability, because it makes issues of exploration
more complicated. However, in non-Markov domains,

policy-sensitivity is actually an asset. Because ob-
servations do not uniquely correspond to underlying
states, the value of a policy depends on the distribu-
tion of underlying states given a particular observa-
tion. But this distribution generally depends on the
policy. So, the value of a state, given a policy, can
only be evaluated while executing that policy. In fact,
Q-learning can be shown to fail to converge on very
simple non-Markov domains [22]. Note that, when
SARSA is used in a non-Markovian environment, the
symbols z and 2’ in equation (1) represent observa-
tions, which usually can correspond to several states.

The sARrRSA algorithm can be augmented with an eli-
gibility trace, to yield the sARSA(A) algorithm (a de-
tailed exposition is given by Sutton and Barto [23].)
With the parameter A set to 0, SARSA () is just SARSA.
With A set to 1, it is a pure Monte Carlo method, in
which, at the end of every trial, each state-action pair
is adjusted toward the cumulative reward received on
this trial after the state-action pair occurred. Pure
Monte-Carlo algorithms make no attempt at satisfy-
ing Bellman equations relating the values of subse-
quent states; in partially observable domains, it is of-
ten impossible to satisfy the Bellman equation, mak-
ing Monte-Carlo a reasonable choice. SARSA()A) de-
scribes a useful class of algorithms, then, with appro-
priate choice of A depending on the problem. Thus,
SARSA(A) with a large value of A seems like the most
appropriate of the conventional reinforcement-learning
algorithms for solving partially-observable problems.

2.2 VAPS

Baird and Moore have derived, from first principles,
a class of stochastic gradient-descent algorithms for
reinforcement learning. At the most abstract level, we
seek to minimize some measure of the expected cost of
our policy; we can describe this high-level criterion as

B=> Y Pr(s)e(s) ,

T=0 §€~§T

where Sy is the set of all possible experience sequences
that terminate at time 7. That is,

§ = <I07 UQy TQy evey Tty Uty Tty eeey T, UT, rT) 3

where x¢, us, and 7, are the observation, action, and
reward at step ¢ of the sequence, and zp is an ob-
servation associated with a terminal state. The loss
incurred by a sequence § is £(5). We restrict our at-
tention to time-separable loss functions, which can be



written as

e(trunc(s, 1)) for all s € §T,

M%

t=0

where e(s) is an instantaneous error function as-
sociated with each (finite) sequence prefix s =
(0, U0, 0, -, Tt, Ut, 7Y (2 being any observation, not
necessarily a terminal one), and trunc(8,t) represent-
ing the sequence s truncated after time¢. For instance,
an error measure closely related to Q-learning is the
squared Bellman residual:

equ(s ZPfl‘t—rHUt 1, Ut—1)

[rt—l + mjx*yQ(m, u) — Q(x—1, Ut—l)]2

The sARSA version of the algorithm uses the following
error measure:

€sARSA (3) =

1
3 EPr(mt =z |xi_1,u—1) ZPr(ut =u | x¢)

[re—1 +vQ(2, u) — Q(2i—1, up—1)]?

Note that we average over all possible actions u; ac-
cording to their probability of being chosen by the pol-
icy instead of picking the one that maximizes Q-values
as in eq;. Baird and Moore also consider a kind of pol-
icy search, which is analogous to REINFORCE [27]:

epolicy(s) =b— Vtrt 3

where b is any constant. This immediate error is
summed over all time ¢, leading to a summation of
all discounted immediate rewards v'r;. In order to
obtain the good properties of both criteria, they con-
struct a final criterion that is a linear combination of
the previous two:

= (1 - ﬂ)eSARSA + ﬂepolicy .

This criterion combines Value And Policy Search and
is, hence, called vaps. We will refer to it as vaps(g),
for different values of 3.

Baird and Moore show that the gradient of the global
error with respect to weight k£ can be written as:

% —ZZPr

t=0 s€5;

d Ny
Bwk ZZ)— InPr(uj_q1|z;-1)| ,

where S; is the set of all experience prefixes of length
t. Technically, it is necessary that Pr(u’ = u | z; =
z) > 0 for all (z,u) (otherwise, some zero probability
trajectories may have a non-zero contribution to the
gradient of B [9]). In this work we use the Boltzmann
law for picking actions, which guarantees this property
(see section 2.3).

It is possible to perform stochastic gradient descent
of the “error” B, by repeating several trials of inter-
action with the process. Each experimental trial of
length T provides one sample of s € S; for each ¢t < T.
Of course, these samples are not independent, but it
does not matter since we are summing them and not
multiplying them. We are thus using stochastic ap-
proximation to estimate the expectation over s € S;
in the above equation. During each trial, the weights
are kept constant and the approximate gradients of the
error at each time ¢,

InPr(uj_q1]z;-1) ,

are accumulated. Weights are updated at the end of
each trial, using the sum of these immediate gradients.
An incremental implementation of the algorithm can
be obtained by using, at every step ¢, the following
update rules:

ATy, = %lnPr(ut_llxt—ﬁ )
0
Awpy = —a —awke(st)+e(5t)Tkt ;

where s; represents the experience prefix

(20, U0, 70, - - - , Tt, U, Tt), i.€., the history at time ¢.
Note that the “exploration trace” T} ; is independent
of the immediate error e used. It only depends on the
way the output Pr(u; = u|z;) varies with the weights
wg, i.e., on the representation chosen for the policy.

The gradient of the immediate error e with respect to
the weight wy is easy to calculate. For instance, in the
case of the sSARSA variant of the algorithm we have:

0

EeSARSA(S) =

ZPI‘(It =z | @1, ut-1) ZPr(ut =u| )
Q(‘l‘t—la Ut—l)]
(It—h Ut—l)] .

[r—1+7Q(x, u) -

0 (2, u) 0
— Ofz.u) — —
Vawk ’ E)wk
Once more, we descend this gradient by stochastic ap-
proximation: the averaging over z; and wu; is replaced



by a sampling of these quantities. However, since these
variables appear twice in the equation and they are
not just added, we have to sample both z; and u; in-
dependently two times in order to avoid any bias in the
estimation of the gradient. It is not realistic to satisfy
this requirement in a truly on-line situation, since the
only way to get a new observation is by actually per-
forming the action. Note that for the case 3 = 1 we do
not need the second sample, so the vaprs(1) algorithm
is effective in the on-line case.

In the case of policy search we have: %epolicy(s) =0,
for all wy. This may seem strange; but for policy
search, the important thing is the state occupations,
which enter into the weight updates through the trace.

2.3 vaprs(1)

In this section, we explore a special case of VAPs, in
which the @Q-values are stored in a look-up table. That
is, there is one weight w; = Q(z,u) for each state-
action pair. Note that it is not necessary to use the
VAPS sequence-based gradient in a look-up table imple-
mentation of QL or SARSA, as long as it is confined to
a Markovian environment. However, it makes sense to
use it in the context of POMDPs. Under this hypoth-
esis, the exploration trace Ty ; associated with each
parameter Q(z,u) will be written Ty 4 ;.

We will also focus on a very popular rule for randomly
selecting actions as a function of their @-value, namely
the Boltzmann law:

(Q(u)/e
S eREan/e

Pr(us = ulzy = z) =

where ¢ is a temperature parameter.! Under this rule
we get:

dInPr(uy = ulzy = 2)
aQ(z!, u')
0 if 2’ # z,
—Pr(us = v'|ze = 2)/c if 2’ =z and u’ # u,
[ — Pr(us = u|zy = 2)] /e if 2’ =2 and v/ = u.

In this case, and if we add the hypothesis that the
problem is an achievement task, i.e., the reward is al-
ways 0 except when we reach an absorbing goal state,

!Note that Baird and Moore use an unusual version of
the Boltzmann law, with 1+e® in place of €” in both the nu-
merator and the denominator. We have found that it com-
plicates the mathematics and worsens the performance, so
we will use the standard Boltzmann law throughout.

the exploration trace T; , ; takes a very simple form:

Touw: = l[Néu—NéPr(ut:uh:t:m)]
o § t ¢ (2)
= ¢ [Nx,u - E[Nx,u]] )
where N!  is the number of times that action u has

z,u
been executed in state z at time ¢, N! is the number
of times that state x has been visited at time ¢, and
E[N;u] represents the expected number of times we
should have performed action u in state z, knowing
our exploration policy and our previous history.

As a result of equation (2), VAPS using epoicy as imme-
diate error, look-up tables and Boltzmann exploration
reduces to a very simple algorithm. At each time-step
where the current trial does not complete, we just in-
crement the counter N’  of the current state-action

pair. When the trial coirnpletes, this trace is used to
update all the @)-values, as described above.

It is interesting to try to understand the properties and
implications of this simple rule. First, a direct conse-
quence is that when something surprising happens, the
algorithm adjusts the unlikely actions more than the
likely ones. In other words, this simple procedure is
very intuitive, since it assigns credit to state-action
pairs proportional to the deviation from the expected
behaviour. Note that SARSA(A) is not capable of such
a discrimination. This difference in behaviour is illus-
trated in the simulation results.

A second interesting property is that the @Q-value up-
dates tend to 0 as the length of the trial tends to
infinity. This also makes sense, since the longer the
trial, the less the final information received (the final
reward) is relevant in evaluating each particular ac-
tion. Alternatively, we could say that when too many
actions have been performed, there is no reason to at-
tribute the final result more to one of them than to
others. Finally, unlike with Baird and Moore’s version
of the Boltzmann law, the sum of the updates to the
@-values on every step is 0. This makes it more likely
that the weights will stay bounded.

3 Experiments
Domains We have experimented with sarsa and
VAPS on five simple problems. Two are illustrative
problems previously used in the reinforcement-learning
literature; two others are instances of load-unload with
different parameters; and the fifth is a variant of load-
unload designed by us in an attempt to demonstrate a
situation in which vaPs might outperform sarRsa. The
five problems are :
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Figure 3: The state-transition diagram of the load-
unload problem with two loading locations; aliased
states are grouped by dashed boxes.

e Baird and Moore’s problem [1], designed to illus-
trate the behavior of vaps,

McCallum’s 11-state maze [12], which has only 6
observations.

The load-unload problem, as described above, in
which there are three locations (the loading loca-
tion, the unloading location, and one intermediate
one),

A five-location load-unload problem (fig. 2), and

A variant of the load-unload problem where a
second loading location has been added, and the
agent is punished instead of rewarded if it gets
loaded at the wrong location. The state space
is shown in figure 3; states contained in a box
are observationally indistinguishable to the agent.
The idea here is that there is a single action that,
if chosen, ruins the agent’s long-term prospects.
If this action is chosen due to exploration, then
SARSA(A) will punish all of the action choices
along the chain but vaps will punish only that
action.

All these domains have a single starting state, except
McCallum’s problem, where the starting state is cho-
sen uniformly at random.

Algorithmic Details For each problem, we ran two
algorithms: vaps(1) and saArRSA(1). The optimal pol-
icy for Baird’s problem is memoryless, so the algo-
rithms were applied directly in that case. For the other
problems, we augmented the input space with an ad-
ditional memory bit, and added two actions: one for
setting the bit and one for clearing it.
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Figure 4: Learning curves for vAPs and SARSA on the
load-unload problem (one loading location).

The @-functions were represented in a table, with one
weight for each observation-action pair. The learn-
ing rate is determined by a parameter, ag; the actual
learning rate has an added factor that decays to 0 over
time: a = agp + ﬁ, where N is trial number. The
temperature was also decayed in an ad hoc way, from
Cmax down to ¢pin with an increment of

) 1/(N-1)
Se = (szn >
Cmaz

on each trial. In order to guarantee convergence of
SARSA in MDPs, it is necessary to decay the tempera-
ture in a way that is dependent on the ()-values them-
selves [21]; in the POMDP setting it is much less clear
what the correct decay strategy is. In any case, we
have found that the empirical performance of the al-
gorithm is not particularly sensitive to the tempera-
ture. The parameter b in the immidiate error epgiicy
of vaps was always set to 0.

Experimental Protocol Each learning algorithm
was executed for K runs; each run consisted of IV tri-
als, which began at the start state and executed until
a terminal state was reached or M steps were taken.
If the run was terminated at M steps, it was given
a terminal reward of -1; M was chosen, in each case,
to be 4 times the length of the optimal solution. At
the beginning of each run, the weights were randomly
reinitialized to small values.

Results It was easy to make both algorithms work
well on the first three problems: Baird’s, McCallum’s
and small load-unload. The algorithms typically con-
verged in fewer than 100 runs to an optimal policy.
One thing to note here is that our version of vAPS, us-
ing the true Boltzmann exploration distribution rather
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Figure 5: Learning curves for vAPs and SARSA on the
load-unload problem with two loading locations.

than the one described by Baird and Moore, seems to
perform significantly better than the original, accord-
ing to results in their paper.

Things were somewhat more complex with the last two
problems (5 location load-unload with one or two load-
ing locations). We experimented with parameters over
a broad range and determined the following:

e VAPS requires a value of 3 equal or very nearly
equal to 1; these problems are highly non-
Markovian, so the Bellman error is not at all use-
ful as a criterion.

e For similar reasons, A = 1 is best for SARSA(A).

e Exploration was simplified by setting € to 0; em-
pirically, ¢mqr = 1.0 and c¢pin = 0.2 worked
well for vaPs in both problems, and ¢4, = 0.2,
Cmin = 0.1 worked well for SARSA(A).

e A base learning rate of ap = 0.5 worked well for
both algorithms in both domains.

Figures 4 and 5 show learning curves for both al-
gorithms, averaged over 50 runs, on the load-unload
problem with one or two loading locations. Each run
consisted of 1,000 trials. The vertical axis shows the
number of steps required to reach the goal, with the
terminated trials considered to have taken M steps.

On the original load-unload problem, the algorithms
perform essentially equivalently. Most runs of the al-
gorithm converge to the optimal trial length of 9 and
stay there; occasionally, however it reaches 9 and then
diverges. This can probably be avoided by decreas-
ing the learning rate more steeply. When we add the
second loading location, however, there is a significant

difference. vaPs(1) consistently converges to a near-
optimal policy, but sARsSA(1) does not. The idea is
that sometimes, even when the policy is pretty good,
the agent is going to pick up the wrong load due to ex-
ploration and get punished for it. sARsA will punish
all the state-action pairs equally; vaps(1) will pun-
ish the bad state-action pair more due to the different
principle of credit assignment.

4 Conclusions

As Martin and Littman showed, small PoMDPs can
be solved effectively using stigmergic policies. Learn-
ing reactive policies in highly non-Markovian do-
mains is not yet well-understood. We have seen
that the vaps algorithm, somewhat modified, can
solve a collection of small POMDPs, and that although
SARSA(A) performs well on some POMDPs, it is possi-
ble to construct cases on which it fails. In a general-
ization of this work, we applied the vaps algorithm
to the problem of learning general finite-state con-
trollers (which encompass external-memory policies)
for POoMDPs [14].
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